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LElTER TO THE EDITOR 
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Abstract. We study the statistics of the ideal chain (or equally weighted trajectories) for 
the fist time on a two-dimensional critical percolation cluster. We discuss the asymptotic 
behaviour of the mean end-to-end distance and the number of chains for the long chain 
limit by exact enumeration. Our results strongly suggest that this problem does not belong 
to the same universality class as the random walk (or kinetically weighted trajectories) on 
the same fractal cluster. 

Random walks (RW) have been studied extensively on (Euclidean) hypercubic lattices 
[i j, on jdeterministicj seif-simiiar structures (exact iractaisj [ij, and aiso on disordered 
systems (e.g. [2,3] and references therein). This problem is intimately related to another 
problem called the ideal chain (IC), which models the polymers in solution in the limit 
of no excluded volume effects [4]. Unlike the RW, the statistical weight given at each 
step for the IC is a constant independent of the connectivity of the location of the 
monomer (represented by the coordination number on a lattice). As a consequence, 

only on the length of the chain itself. A way to picture this is to think of the RW as a 
dynamical problem and of the IC as a static one [ 5 ] .  

Although the two problems are certainly equivalent on Euclidean lattices with all 
sites having the same corrdination number, they have been shown to differ on specific 
examples of exact fractals [6]. In certain exact fractals where the sites of the highest 
coordination number do not form an infinite connected network, the asymptotic long 
chain behaviour was found to be localized, such as R or R - (log N)X (x>  0) 
[6] where R is the mean linear size and N is the contour length of the chain. Since 
the ideal chain tends to visit the sites with high coordination numbers preferentially, 
it is plausible that the chain is less swollen if those sites tend not to be a part of the 
extended network. 
On the other hand, in some cases where the sites of the highest coordination number 

end-to-end distance was found. However, even in such cases, the value of the Flory 
exponent U [4] was significantly different (always higher) than the corresponding one 
for the random walk problem on the same structure [a]. In  all the cases previously 
studied, the behaviour of the asymptotic number of chains (or the entropy) was found 
to be qualitatively the same as the RW problem, possibly with different values of the 
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Subsequent numerical work [7] also showed that on some more complicated fractal 
structures, such as certain deterministic fractal surfaces, this was not the case. In those 
cases, a power-law behaviour for the IC was found with an exponent very close to that 
for the RW. 

It is then very interesting to ask whether or not this kind of difference in behaviours 
between IC and RW exists in statistical (or disordered) fractals. In the present work, 
our aim is to investigate the IC problem on 3 two-dimensional lattice with quenched 
forbidden regions which occur stochastically. A simple model of such a system is the 
percolation cluster [8]. Let p be the independent probability that a given site is occupied 
(and thus available to the chain). At the percolation threshold p., the critical cluster 
formed by connecting occupied nearest-neighbour sites can be considered self-similar 
at all scales (since the correlation length is infinite) (see e.g. [SI). This is therefore a 
very handy example of a statistical fractal for our purpose. We are aware that there 
was a previous study of this problem by a different approach in an unpublished work 
by Vanderzande [9]. 

We numerically generate such a critical percolation cluster from a seed site on a 
square lattice using a computer algorithm which falls in the category of the breadth-first 
search (see e.g. [3]). The clusters used in this work are obtained in this way up to the 
300th generation (or chemical distance [2] equal to 300). All the ICS of a given (contour) 
length that start from selected occupied sites are then enumerated exactly and their 
properties, particularly the end-to-end distances and how many chains there are, are 
investigated. 

Let c be a given chain starting from site P of the cluster % at the percolation 
threshold p c .  We define '8 relative to the seed site; thus even an identically shaped 
cluster would be considered distinct if it is displaced from % relative to the seed 0. 
Then the number C(N, P )  of N-step chains starting from P and terminating anywhere 
in the cluster is: 

x. 

C(N,P)= 1. (1) 
CE 'B 

Another quantity of interest is the mean square end-to-end distancc ( R L )  of N-step 
chains c E % defined as: 

As mentioned above the weight 9 ( c )  given to the chain c is a constant independent 
of its environment and depends only upon the length of the chain. Clearly this factor 
cancels out both from the numerator and denominator, leaving the number of chains 
in the denominator. This is indeed what one gets from the usual self-avoiding walk 
(SAW) problem if the constraint of self-avoidance is released. In this sense, the usual 
SAW problem should also be called the self-avoiding chain. 

The difference from the usual random walk is that in the latter the weight 9 ( w )  
given to a walk w is a function of the visited sites which depends upon the model 
chosen. For example in the case of the myopic anr [lo], 9( w )  =lTGw l / z i  where zj is 
the coordination number of the ith site visited by the walk. In the case of the blind 
ant the probability to hop to a particular nearest-neighbour site is a constant indepen- 
dent of the current location. However, there is a finite probability for the blind ant to 
stay at the current site if some of the neighbours are unoccupied. It is this probability 
which makes this problem different from the IC. 
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The final average is the quenched average over all the possible disorder configura- 
tions 42 defined as 

fm=x P ( % ) f ( ' t )  ( 3 )  
Y 

for any propertyf( 't) of the configuration "where P (  %) is the probability of occurrence 
of %. We generally indicate the disorder average by a bar above the quantity. 

We could also consider averaging over the starting points of the chains or walks: 

where /%I is the number of sites in the cluster 't. A similar definition can be given also 
for (R; ) .  Since any cluster looks different when viewed from different sites, this last 
average can be regarded as sort of a disorder average even though it is for a given 
cluster 't. Averages over starting points on a given configuration will be denoted by a 
hat above the quantity. 

The averaged quantities defined above are assumed to have asymptotic power-law 
dependence on N. This assumption is, of course, to be tested a posteriori. Thus we 
assume, in the limit of N >> 1, 

C(N,O)-p"'-' - 
( R L ) -  N2" 

and investigate whether good fits can be obtained for suitable values of the exponents 
y and v as well as for the effective coordination number p. 

If S = I%I is the total number of sites in a given cluster %, the connectivity of the 
percolating cluster is stored in an S x S matrix W, such that W, = 1 if sites i and j 
are nearest neighbours and i, j E %', and 0 otherwise. Let us further define two vectors 
of S components: a where a, = 1 and a, = 0 for j = 2, .  . . , S, and b where b, = 1 for 
j = 1 , 2 , .  . . , S, where we denote the seed site 0 by i = 1. Then 

CN = C(N,O) = bi( WN),aj (7) 
i , i  

for each configuration %. 
In a similar way we can calculate the mean square end-to-end distance ( R L ) =  

( ( I N  -r0)'), where rN is the end position of the Nth step and ro is that of 0. It is easy 
to see that, if we define a vector 81 of S components by 91, = 0 and 3, = (r( j )  - r0)' 
for j = 2 , 3 , .  . . where r(j) is the coordinates of the jth site on the cluster, then we have 

In order to avoid an overflow which would otherwise quickly occur in the numerical 
computation of these quantities, we use a suitable Gram-Schmidt normalization pro- 
cedure by which the result of the multiplication by W is normalized at every step. It 
is also worth mentioning that apart from the generation of the percolation cluster, the 
calculations of the various quantities are exact. 

The results are shown in figure 1 for a maximum number of steps of 1600 averaged 
over 1000 different clusters. These clusters were generated to the chemical distance 
300 and had a mean size of about 12 300 and a standard deviation of about 4800. The 
mean square end-to-end distance exponent 2 v  is computed by means of a linear 
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Figure 1. Log-log plot ofthe mean square end-to-end d i s t a n c e m  averaged over disorder 
(0) and results from two individual clusten (0, A). 

- 
least-squares fit to the log-log plot of log(Rk) against log N, which yields a value 
1.1616 *0.022. This estimate was obtained by first calculating the average over 3 batches 
of 1000 clusters each for each selected value of N and then performing a linear 
regression on these values in the log-log scale. The error estimate is the standard 
regression error. This estimate has been checked for a possible N dependence of the 
slope by calculating an effective N-dependent exponent v, by the same method as 
was used in the context of the self-avoiding walk problem [ l l ]  and then extrapolating 
it to N-rm. The result is in agreement with the quote estimate (cf figure 2). 

This value of v would correspond to the associated fractal dimension of the chain 
d.= l J v x 1 . 7 ,  whereas the best known estimate for the RW problem on the critical 
percolation cluster is in the range 2.8-2.9 [3]. This result is consistent with the previous 
analysis [6] for some exact fractals where the sites of the highest coordination number 
do form an infinite connected cluster. 

Also shown in figure 1 are some typical results for (RL) for individual clusters. 
Clearly, chain dimensions increase as a function of the number of steps N in discrete 
steps followed by flat plateaux, and the disorder average removes this discrete structure 
resulting in the smooth final curve. (It may be worth mentioning that the large local 
slope where the jumps take place does not imply larger than linear extension.) This 
behaviour indicates that the ideal chain does not visit the cluster uniformly, but tends 
to move from a localized region to another in discrete jumps. The obvious suggestion 
is that these localized regions correspond to areas of high connectivity and the step 
structure thus reflects the cluster topology. We also checked that such a feature is not 
present in the case of the random walk (both for the blind and the myopic ant) where 
the diffusion for a fixed cluster follows a power law and the average simply picks out 
the best slope. This aspect of the problem is presently being investigated and the results 
will be reported subsequently. 
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Figure 2. Effective exponent uN calculated using the recipe given in [ I l l  is given against 
IIN. 

If we instead average over 1000 starting points randomly chosen on a given cluster, 
we obtain quite similar results (not shown). Again the step structure of the results 
from individual starting points disappears as the average is taken over the starting 
points. 

In view of the non-uniform behaviour of the ideal chain, we also checked for the 
possibility of multifractal scaling for the moments of the end-to-end distance R. We 
first performed an analysis of the probability P ( R )  of finding the chain at a distance 
R = JrN -roJ from the starting point, and plot the quantity P ( R ) N ’  against R / N ’  for 
different values of N in figure 3 .  The result is clearly consistent with simple scaling. 
- In figure 4 we also show the different moments q =0, 0.5, 1, 1.5, 2 of the quantity 
(R&)’’q. We report the corresponding numerical estimates of the exponent U and the 
effective coordination number p in table 1. The result shows an increasing trend 
(although gradual) of the estimate of u ( q )  as q increases. Thus the scaling of the 
probability P ( R )  is not perfect and there is the possibility of a multifractal distribution. 
This may be related to the staircase behaviour for the size of the ideal chains, whereby 
different moments emphasize correspondingly different scales. Further work on this 
point is in progress. 

In the case of the RW it is known that the constraint of the conservation of the 

It is not however obvious that the same value is to be found for the IC problem. 
Indeed in some cases of the deterministic fractals considered in [6], it was found that 
this was not actually true. Nevertheless, our results strongly indicate that the value for 
y is 1. This can be inferred by looking at the quantity: 

p.&abi!ity gives = 1, 

AN 
log( S) =log p + ( y - 1 )  - N 

C N  

against A N I N ,  where the flat trend as N+oo corresponds to y=l. 
By means of a linear fit of the quantity log?% against log N, one can also obtain 

the value of p, the effective coordination number. The disorder average of this value 
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Table 1. Moments for (RW"* - N"<q). 

L467 

4 0  0.5 I 1.5 2 

Y 0.517+0.013 0.541 +0.011 0.558*0.01 I 0.511 10,011 0.580*0.011 

for ,L are given in table 2. They show a different behaviour for the q = 0 (i.e. logarithmic) 
moment compared with all the other moments. Since the q = 0 moment corresponds 
to the most probable value [IZ], this difference reflects the fact that the IC is a random 
multiplicative process unlike the RW. 

When the average over all starting points is performed before the average over all 
clusters, we get a much faster convergence for the quantity T. This is expected since, 
according to the previous argument, this is equivalent to taking an average over a 
much larger number of disorder configurations. In this way, we also find the effective 
coordination /Z to be /Z = 3.681 * 0.001. 

The asymptotic behaviour of the many quantities can be obtained from the spectral 
properties of the sparse matrix W [13]. On this basis, we are conducting a detailed 
investigation of these properties. The basic result appears to be that the density of the 
eigenvalues do not increase appreciably in the neighbourhood of the maximum eigen- 
VaIUB. rnys,L,ar,y U,,> W U U l "  , , ,Gall LII'aL wiry LllC III0AILIIUL.I G I g G I I Y P I U c  111611C13 I", U I G  
..-a .. ,,&..-:--,I.. IL:^ ... ̂ ..,-I .I.̂ . -..,.. .L^ --..: -: ..,..- ..-A&"- c^- *L^ 

11.00 

8.80 

6.60 

4 . 4 0  

2.20 

0.00 
0.00 0.20 0.40 0.60 0.80 1.00 

DN/N 
Fi~uure 5. Plot of the quantity log(CR,,N"'/~'') against A N I N ,  for the moments 
q=O(O). 0.5(0), I.O(A), 1.5(+), 2.0(0) .  The result shows the different behaviour of the 
p = 0 (or logarithmic) moment with respecl to the othen. 

Table 2. Moments for*/q -p(q)NNrle'-' 

4 0  0.5 1 1.5 2 

U 3.353*0.001 3.558+0.002 3.56710.002 3.569+0.W2 3.569*0.002 
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asymptotic large N behaviour. Thus, we may expect Amax to equal p appearing in ( 5 ) ;  
this argument is not exactly correct, however, since p is defined from where rare 
clusters with very large CN can dominate. Our preliminary estimate of Amax is 3.495* 
0.002 where 662 clusters of size 10000 were averaged and the error represents the 
standard error of the mean. While this number is not far from the estimate of p, it is 
nonetheless significantly smaller; we believe this can be attributed to the dominance 
of rare clusters in p just discussed. 

If only Amax matters, then it is easy to see that the exponent y has to be 1. If we 
expand the S-component vectors a and b appearing in (7) in terms of an orthonormal 
set of eigenvectors is not difficult to see that the leading term in the susceptibility 

- 

m 
, y ( K ) =  C K N  

N-0 

- 
can be extracted in the limit K + l /p-= l / A m a x  giving the asymptotic behaviour: 

,y(K)-( l  - p K ) - ' .  (11) 

In conclusion we have numerically investigated the mean end-to-end distance and 
number of chains for the ideal chain problem on the percolation cluster at the critical 
threshold p .  in two dimensions. We have showed that this problem does not belong 
to the same universality class as the corresponding random walk problem. We believe 
that this difference, besides its intrinsic interest as a theoretical model, could be also 
of real physical interest in systems like polymers in solution in a situation where the 
excluded volume effect is weak. 
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